OmicsNet Tutorial: IBD Case Study

Computer Requirement

- Modern browser supporting WebGL
- Chrome 50+, Firefox 47+, Safari 10.1+ and Edge 12+
- Please make sure WebGL is enabled in your browser
 - Please consult this web page to verify: <u>https://get.webgl.org/</u>
- If not enabled, please consult our FAQ page for instructions
- For best performance and visualization, use:
- Latest version of Google Chrome
- A modern computer with at least 4GB of physical RAM
- A 15-inch screen or bigger (larger is better)
- Retina Display is supported

Motivation

A recent study collected multi-omics data from stool samples from patients with Crohn's disease, a subtype of inflammatory bowel disease (IBD), to try and understand gut-microbiome drivers of dysbiosis. Here, we analyze lists of molecular features (metabolites, proteins, microbial taxa) that were significantly different between samples collected from dysbiotic and non-dysbiotic patients. The main motivation of this case study is to demonstrate how OmicsNet can be used to integrate and provide background context for multi-omics lists.

Analysis Overview

The main steps are:

- **1. Database selection** for each input list, build an independent network by retrieving all interacting features from an appropriate database.
- Network building upon navigation to this page, all networks from the previous step are merged. There are additional tools for trimming the resulting network if it is too large.
- **3.** Network analytics use the 2D and 3D interactive network viewer to visualize and analyze the trimmed network.

Note: This tutorial makes extensive use of AGORA genome-scale metabolic models (GEMs) to understand interactions between microbial taxa, metabolites, and proteins. GEMs are mathematical representations of metabolism, including reactions between genes, proteins, and metabolites. AGORA derives their GEMs from gut—microbiome data, using logistic regression to predict the potential of different taxa to produce different metabolites.

Data Upload

Select the example data as below, clicking "Upload" for each list. Make sure to select the *IBD example* for **Proteins** and **Metabolites**. Then, click the blue "Proceed" button below the list input.

Objective	Click on a panel below to sta	art			
Explore networks in 2D or 3D space			A Graph File		
Annotate SNPs, taxa, or LC- MS peaks for network analysis		SNPs	Microbial Taxa	LC-MS Peaks	
Network analysis of one or more list(s) of molecules	Genes	Proteins	Transcription	miRNAs	Metabolites
			Upload a list of taxon names		
Upload a list of proteins Enter your data below: ?			Enter your data below: ? Taxon Name Level: Species Name v		Upload a list of metabolites
	Specify organism: Non-sp Set ID type: KEGG 0	ortholog (KO)	Faecalibacterium_prausnitzii Bacteroides_uniformis Eubacterium_rectale		Specify organism: Non-specific (microbiome) V Set ID type: HMDB ID V
	K00262 K10200 K15633 K02355 K04077 K02931 K03809 K00626 K00074 K02996 K00041 K00874 K01006 K04043 Vise example Default	IBD example	Alistipes_putredinis Subdoligranulum_unclassified Escherichia_coli Bacteroides_vulgatus Clostridium_clostridioforme Klebsiella_pneumoniae Clostridium_hathewayi Alistipes_shahii Ruminococcus_obeum Roseburia_inulinivorans Bacteroides_thetaiotaomicron Use our example data \u00e4 Upload Cancel		HMDB0000020 HMDB0000030 HMDB0000034 HMDB0000039 HMDB0000043 HMDB0000062 HMDB0000064 HMDB0000097 HMDB0000126 HMDB0000128 HMDB0000132 HMDB0000133 WSe example O Default O IBD example
	↓ Upload Can	cel			△ Upload Cancel

Database Selection: Microbial Taxa

			<u>Currency metabolites:</u> abu	Indant
Input list(s) ?	Metabolite-protein Taxon-metabolite		dioxide known to occur in	normal
Microbial taxa (46) Protein (191) Metabolite (56) Note - databases	Predicting Metabolic Potential of Microbial Taxa The prediction is obtained based on logistic regression models trained based could be further enriched by introducing protein-metabolite to find out poten toolbar for overview of the potential scores across all metabolites for your in	d on high-quality genome-scale meta ntial enzymes. In the network viewer, put taxa.	functioning cells. <u>Universal metabolites:</u> inc metabolites and other meta across all taxa based on t databases.	lude currency tabolites shared he GEMs
organized by input list type – click to select	AGORA AGORA GEMs (potential scores for 1110 metabolites) EMBL EMBL GEMs (potential scores for 930 metabolites)	Potential score Currency r Excluding: Metabolite	0.9 ? metabolites metabolites ? es without pathway annotation	
	1. Click "Submit" ▶ Sub	mit		

For AGORA GEMs, there are several parameters that can be adjusted. For this analysis we leave them as default, but here is more information in case you want to adjust later:

- Threshold for potential score: score over 0.5 indicates the taxon is more likely to produce the given metabolite and the increasing score value means the greater production possibility;
- **Exclude metabolites**: exclude currency metabolites, universal metabolites, and metabolites without functional information (pathway annotation) to prune network.

Database Selection: Proteins

Note that the table at the bottom has been updated with each network:

Input Type	Network Type	Sizes (node# - edge# - seed#)	Browse	Download	Delete
Microbial taxa	Taxon-metabolite	55 - 379 - 28	⊞	坐	団
Gene	Metabolite-protein	156 - 146 - 54	⊞	৶	団
Metabolite	Metabolite-protein	109 - 114 - 24	⊞	₩	団

Network Building

Multi-omics Network Building

If more than one network was generated in the previous page, they will be merged together to form multi-omics network through shared nodes. The network is then decomposed into connected subnetworks available for visual analysis in the next page. If the resulting subnetwork1 is too large, you can trim the network to be suitable for visual analytics (< 2000 nodes) using the **Network Tools** on the left.

Subnetworks	Sizes (node# - edge#	- seed#)	Topology	Download
subnetwork1	170 - 520 - 64		View	🕁 Download
subnetwork2	24 - 24 - 5	\searrow	View	🕁 Download
subnetwork3	11 - 10 - 2		View	🕁 Download
subnetwork4	10 - 10 - 3			y Download
subnetwork5	9 - 9 - 2	Note - this is a reasonable size, so we do not need to perform network trimming		
subnetwork6	7 - 6 - 3			
subnetwork7	7 - 6 - 1			y Download
subnetwork8	7 - 6 - 1		View	🕁 Download
subnetwork9	6 - 5 - 1		View	🕁 Download
subnetwork10	6 - 5 - 1		View	🕁 Download

R Command History 🛃 Save

dataSet<-Init.Data()

2. dataSet<-PrepareInputList(dataSe
 t,"Your input list", "microbiom
 e", "mic", "species");</pre>

✓ Navigate to:

- 3. dataSet<-PrepareInputList(dataSe
 t,"Your input list", "microbiom
 e", "protein", "ko");</pre>
- 4. dataSet<-PrepareInputList(dataSe
 t,"Your input list", "microbiom
 e", "met", "hmdb");</pre>
- 5. dataSet<-QueryNetMulti(dataSet, "mic", "default", "mic")
- CreateGraph()
- 7. dataSet<-QueryNet(dataSet, "met"
 "agora", "gene")</pre>
- 8. CreateGraph()
 9. dataSet<-QueryNetMulti(dataSet,
- "met", "agora", "met")
 10. CreateGraph()
- 11. CreateGraph()

Network Visualization × Please select the type of netw visualization to proceed. 2D visualization 3D visualization Proceed Proceed

2. Leave as "2D

"Proceed"

visualization" and click

« Previous

Xia Lab @ McGill University (last updated 2022-03-27)

1. Click "Proceed"

updated 2022-03-27)

Proceed >>

Overview of 2D Network: Here we perform some basic adjustments to make the structure more visible.

You can

different color.

σ

given

each feature type is

Т

Note

change the color by clicking

the boxes

Key nodes in 2D Network

We see that there are two taxa with many connections: *Escherichia coli* and *Faecalibacterium prausnitzii*. In particular, they are closely connected to the large deoD and argG seed protein nodes via the predicted interacting Ribose 1-phosphate and Argininosuccinic acid metabolites respectively.

The deoD protein node is of particular interest - we see here that it is directly connected to five seed metabolites and indirectly connected to two more. Here, seed nodes were differentially abundant between dysbiotic and non-dysbiotic samples, and so it is interesting to see some predicted interactions between multiple perturbed 'omics layers.

3D Network: Module Analysis

Ð

olor

			Q	
Function Explorer				
Query: Highlighted nodes V Database: KEGG (gene/protein)	∽ Su	bmit 📊		
Name	Hits	P-val	P-val(adj.	с
Streptomycin biosynthesis	2	0.000032	0.0147	
Biosynthesis of amino acids		0.000119	0.027	
Polyketide sugar unit biosynthesis		0.00031	0.0468	
Phenylalanine, tyrosine and tryptophan bio	2	0.000478	0.0505	
Biosynthesis of antibiotics	4	0.000557	0.0505	
Metabolic pathways	6	0.00133	0.1	
Vitamin B6 metabolism	1	0.0109	0.567	
Taurine and hypotaurine metabolism	1	0.0114	0.567	
Acarbose and validamycin biosynthesis	1	0.0128	0.567	
Discustion of a standard standard	2	0.0127	0.5(7	

3. Select a single module in the "Module Explorer", change the query in the "Function Explorer" to "Highlighted nodes", and click "Submit". This will perform enrichment analysis on the joint list of proteins and metabolites in the module. Here, we see the *Streptomycin biosynthesis* pathway is the most significant in the red module.

ule Analysis		
Xanthine	Escherichia coli	2. Most m default lay better visu colored bu and out, a shift using
Uracil		
e Explorer", change	LDAspartic acid	
"Highlighted nodes", richment analysis on in the module. Here,		

Function I	Explorer				
Query:	All nodes		~		
Database: KEGG (gene/protein) V Submit					
- Na	ime	Hits	P-val	P-val(ad	

2. Most modules will overlap in the default layout. Spread them out for better visualization by clicking the colored bubbles and dragging. Zoom in and out, and switch between rotate and shift using the toolbar on the left.

Algori		ГЕТОрау	auon v Subi	mit 🗖
	Module	Size	P-value	Color
	0	67	1.19e-25	
	1	34	3.81e-12	
	2	14	9.74e-06	
	1	10	0.000393	

1. Select "Label Propagation" and click "Submit". Note the algorithm is stochastic so results may vary.

Proceed >

Guilt-by-Association Analysis	*
Regulation Explorer	*
Path Explorer	*
Batch Selection	*

The End