

OmicsNet

---a web-based 3D visual analytics tool for biological networks

Requirement

- Modern browser supporting WebGL
 - Chrome 50+, Firefox 47+, Safari 10.1+ and Edge 12+
- Please make sure WebGL is enabled in your browser
 - Please consult this web page to verify: <u>https://get.webgl.org/</u>
 - If not enabled, please consult our FAQ page for instructions
- For best performance and visualization, use:
 - Latest version of Google Chrome
- A modern computer with at least 4GB of physical RAM
 - A 15-inch screen or bigger (larger is better)
- Retina Display is supported

Overview

- Goal: Integration of different omics data in the current molecular interaction knowledge framework and visualization using 3D and 2D network.
 - Conventional molecular interaction networks
 - Protein-protein interaction
 - TF-gene regulation
 - miRNA-gene regulation
 - Metabolic reactions
 - Link untargeted MS peaks, SNPs and microbial taxa to knowledge framework
- Build composite network encompassing more than one interaction type

Workflow

New features

- Integrate three new omics type in the molecular interaction framework
 - Use network optimization approach based from NetID algorithm to annotate metabolites from untargeted MS peaks
 - Use genome-scale metabolic models to predict metabolic potential
 - Link single nucleotide polymorphism (SNP) to genes using positionbased mapping
- Support metabolite-metabolite network in the context of metabolic reactions.
- Heatmap visualization of metabolic potential of microbial taxa.
- Network-based guilt-by-association analysis using Random Walk with Restart (RWR) algorithm
- New 3D layout and alternative 2D network visualization

Integrating MS Peaks in metabolic network

The resulting network contains predicted metabolites (yellow), putative metabolites (grey) and enzymes (red).

Predicting microbial taxa's metabolic potential

Integrating taxon-metabolite prediction in KEGG metabolic pathway. Metabolite are represented by yellow nodes. Size of metabolite

Heatmap showing metabolic potential of microbial taxa

Network building

- OmicsNet supports two main cases of network building
 - Upload single omics list:
 - Identify interacting partners from its primary interaction type and expand the resulting network iteratively by adding other interaction types.
 - Upload multiple omics lists:
 - Build multi-omics network connecting the different omics features.

Network building for single list

- Primary interaction network is composed of seeds and its immediate interacting partners.
- Secondary interactions will query for interactions against molecules contained in the primary network.
 - Add edges: PPI as secondary or tertiary interaction will add edges to existing gene/proteins in the network
 - Add nodes and edges: All other interaction types
- If more than one input list is uploaded, the input list of secondary or tertiary interaction will serve as a constraint to filter out the nodes that are not seeds in the composite network.

Network building for multiple lists

- Each list of molecules are used to build individual omics interaction network
- The individual omics networks are merged to form composite network through shared nodes.

Improved network building interface

Different 3D layouts

Left: force-directed layout (with edge bundling and halo effect); Middle: multi-layered layout (for multi-omics integration); Right: spherical layout (inspired by Google Earth)

New features in network visualization

2D network visualization: concentric circle layout facilitates visualization of connection patterns of focal node with the rest of the network

Module-based force-directed layout; Each bubble represents a graph community.

Implementation

- Client-server framework that uses Java and R server for network construction and some analysis functions.
- Browser-based application using WebGL interfaced by Three.js to visualize 3D network interactively.
- Sigma.js, a canvas-based graphing library is used for 2D network visualization

Core Technologies for 3D visualization

- WebGL
 - JavaScript API allowing the rendering of 3D graphics in web browser without plug-ins
 - High performance, GPU accelerated
 - Steep learning curve: requires developers to have extensive math knowledge about 3D, lighting and shading.
- Three.js
 - Framework interfacing with WebGL to display 3D graphics
 - Abstract away the difficulties of WebGL.

Three.js enables high quality 3D graphics

Key Features

- Interactive 2D/3D network visualization in web browser using canvas and WebGL technology
- Enable integration of multiple types of molecular interactions
- Built-in knowledgebase for network building
 - Protein-protein interaction
 - Transcription factor-gene regulation
 - miRNA-gene regulation
 - Metabolite-protein interaction
- Support integration of less well-established omics data types by using computational predictions
 - SNPs
 - Microbial taxa
 - Untargeted metabolomics MS peaks

Databases

Databases (2)

The End