

OmicsNet

---a web-based 3D visual analytics tool for biological networks

Requirement

- Modern browser supporting WebGL
 - Chrome 50+, Firefox 47+, Safari 10.1+ and Edge 12+
- Please make sure WebGL is enabled in your browser
 - Please consult this web page to verify: <u>https://get.webgl.org/</u>
 - If not enabled, please consult our FAQ page for instructions
- For best performance and visualization, use:
 - Latest version of Google Chrome
- A modern computer with at least 4GB of physical RAM
 - A 15-inch screen or bigger (larger is better)
- Retina Display is supported

Overview

- Goal: provide a web-based application supporting 3D network visualization and integration of multiple types of molecular interaction.
 - Conventional molecular interaction networks
 - Protein-protein interaction
 - TF-gene regulation
 - miRNA-gene regulation
 - Enzyme-metabolite interaction
 - Composite network encompassing more than one interaction type

Workflow

Current limitations in network visualization

- Lack of web-based tools for network visualization and analysis.
- Network visualization often hindered by "hairball effect" due to large number of nodes and edges.
- Support for composite networks containing multiple interaction types are lacking.

3D visualization can improve visual experience

- Flexible graph exploration and navigation with more viewing perspectives
- Additional dimension gives more space for graph layout, facilitating the visualization of larger data
 - Multilayer layout improves the visualization of network containing multiple interaction types
- Human visual system prefers network represented in 3D.
 - Irani, P. and C. Ware (2003). "Diagramming information structures using 3D perceptual primitives." <u>ACM</u> <u>Transactions on Computer-Human Interaction (TOCHI)</u> **10**(1): 1-19.

3D network visualization

WebGL supports high quality 3D graphics

Implementation

- Client-server framework that uses Java and R server for network construction and some analysis functions.
- Browser-based application using WebGL interfaced by Three.js to visualize 3D network interactively.

three.js

Core Technologies WebGL

- HTML5 and JavaScript
- WebGL
 - JavaScript API allowing the rendering of 3D graphics in web browser without plug-ins
 - High performance, GPU accelerated
 - Steep learning curve: requires developers to have extensive math knowledge about 3D, lighting and shading.
- Three.js
 - Framework interfacing with WebGL to display 3D graphics
 - Abstract away the difficulties of WebGL.

Key Features

- Interactive 3D network visualization in web browser using WebGL technology
- Enable integration of multiple types of molecular interaction
- Built-in knowledgebase for network building
 - Protein-protein interaction
 - Transcription factor-gene regulation
 - miRNA-gene regulation
 - Metabolite-protein interaction

Databases

The End